Air movements and dispersion of contaminants e.g., in front of steam autoclaves

Professor Bengt Ljungqvist, PhD

Chalmers University of Technology, Gothenburg, Sweden
CONVECTIVE TRANSPORT

SOURCE

STREAMLINE
The theoretical velocity profile through a door opening with a temperature difference.
Through one-half of the opening, the discharge flow rate Q, (m³/s), in each direction can be calculated by:

$$Q = C_d \frac{WH^{3/2}}{3} (g \frac{\Delta \rho_o}{\rho_{om}})^{1/2}$$

- C_d = discharge coefficient
- W = opening width (m)
- H = opening height (m)
- g = gravitational acceleration (m/s²)
- $\Delta \rho_o$ = density difference (kg/m³)
- ρ_{om} = mean density (kg/m³)
\[c = \left\{ c_0 - \frac{S}{(Q_d + Q_m)} - \frac{(Q_d \cdot c_k)}{(Q_d + Q_m)} \right\} \cdot e^{-\frac{(Q_d + Q_m) \cdot t}{V}} + \frac{S}{(Q_d + Q_m)} + \frac{Q_d \cdot c_k}{(Q_d + Q_m)} \]
Equivalent door opening time with maximal door opening angle ($\pi/2, 90^\circ$)

\[t_e = t_h + \frac{2}{\pi} (t_0 + t_s) \]

Opening time (t_0) = closing time (t_s) = 3 seconds

Open hold time (t_h) = 2 s, 5 s and 12 s give the following equivalent door opening times (t_e)

Fast: \[t_e = 2 + 3,8 = 5,8 = 6 \text{ seconds} \]
Average: \[t_e = 5 + 3,8 = 8,8 = 9 \text{ seconds} \]
Slow: \[t_e = 12 + 3,8 = 15,8 = 16 \text{ seconds} \]
Concentration of bacteria-carrying particles as a function of time in an operating room with an air volume flow of 3.0 m3/s when one door is opened at a time.

The concentration in the adjacent corridor is 180 CFU/m3.
Concentration of bacteria-carrying particles as a function of time in an operating room with an air volume flow of 3.0 m3/s when one door is opened at a time.

The concentration in the adjacent corridor is 100 CFU/m3.
AUTOCLAVES

- are used for sterilization of equipment and supplies
- aseptic production
THEORY

Concentration of Airborne Contamination in a Chamber

\[
\frac{dc}{dt} + \frac{Q}{V} c = \frac{Q c_R}{V}
\]

\[
\begin{align*}
c &= \text{concentration in the chamber;} \\
 &= \text{particles (number/m}^3\text{); bacteria-carrying particles (CFU/m}^3\text{)}
\end{align*}
\]

\[
\begin{align*}
t &= \text{time (s)}
\end{align*}
\]

\[
\begin{align*}
Q &= \text{flow rate through door opening in each direction (m}^3\text{/s)}
\end{align*}
\]

\[
\begin{align*}
V &= \text{chamber volume (m}^3\text{)}
\end{align*}
\]

\[
\begin{align*}
c_R &= \text{constant concentration in the room (ambient area)}
\end{align*}
\]
The expression of the concentration in the chamber when the door is open becomes

\[c = c_R \left(1 - e^{-\frac{Q}{V} t} \right) \]
Air Velocities - Autoclave Opening

Results

At the beginning

After 30 minutes
Air Temperatures - Autoclave Opening

Result

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>Temp. outflowing air</th>
<th>Temp. air in chamber</th>
<th>Temp. inflowing air</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The graph shows the temperature changes over time for outflowing air, air in the chamber, and inflowing air.
Air Movements - Autoclave Opening - CFD

RESULTS - Case 1 - No HEPA-filter above the opening
RESULT - Case 1 - No HEPA-filter above the opening
Air Movements - Autoclave Opening - CFD

RESULT - Case 2 and 3
HEPA-filter above the opening
Air Temperatures - Autoclave Opening - CFD

RESULTS - Case 2 and 3

HEPA-filter above the opening

0.45m/s

+56°C

+62°C

+50°C

-45°C

+38°C

+27.5°C

0.90m/s

+45°C

+38°C

+27.5°C

+26°C

+20°C
Air Velocities - Autoclave Opening - CFD

RESULTS - Case 2 and 3
HEPA-filter above the opening
Air Movements - Autoclave Opening - CFD

RESULTS - Case 4 and 5
HEPA-filter at the side of the opening

0.45m/s 0.90m/s
Air Velocities - Autoclave Opening - CFD

RESULTS - Case 4 and 5

HEPA-filter at the side of the opening

0.45m/s

0.90m/s
Air Temperatures - Autoclave Opening - CFD

RESULTS - Case 4 and 5

HEPA-filter at the side of the opening

0.45m/s

0.90m/s
SUMMARY - CFD

Chamber openings with outflow in upper part are preferably protected by

- Horizontal airflow (0.45m/s or 0.9m/s)
- Vertical airflow with high air velocity (approx. 0.9m/s)
REFERENCES

