Biocidal Control of Mycoses and Mycotoxicoses

Elena Piecková
Assoc. Prof. in Public Health, Head of Mycology and Ntl Ref Ctr Disinf & Steriliz

Slovak Medical University, Bratislava, Slovakia
Agenda

- A sketch on mycotic health care-associated infections (HAI)
- Overview of fungicidal/-static biocides and disinfection procedures in health/social care - their efficacy and sensitivity vs resistance
- Laboratory testing of antifugal biocides
- Good cleaning/disinfection practice in health-care units
Clean Care is Safer Care
EC COUNCIL RECOMMENDATION (2009/C 151/01), 9 June, 2009

on patient safety, including the prevention and control of healthcare associated infections:

- in Member States between 8 % and 12 % of patients admitted to hospital suffer from adverse events whilst receiving healthcare

European Centre for Disease Prevention and Control (ECDC), 2012

- on average, healthcare associated infections occur in one hospitalised patient in 20, that is to say 4.1 million patients a year in the EU, and that 37 000 deaths are caused yearly
• over the past decade - an indispensable institution in the scope of European health policy

• a platform for discussion for the various stakeholders in the field of public health and health care

• 03-04/10/2013 - 6th EHFG: - an estimated total of 3.2 million patients (95% confidence interval: from 1.9 to 5.2 million) with a HAI in European hospitals each year
Ill health due to fungi

Mycotic Diseases

Allergies
Infections – Mycoses
Intoxications – Mycotoxicoses

HAI incidence – yeast 30/100,000 population
- mould 2/100,000 - - - IC patients’
mortality rate over 20 %
Prevalency of fungal nosocomial infections according to hospital departments

<table>
<thead>
<tr>
<th>Department</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>6.8</td>
</tr>
<tr>
<td>Psychiatry</td>
<td>0.4</td>
</tr>
<tr>
<td>Geriatrics</td>
<td>2.5</td>
</tr>
<tr>
<td>Gynaecology</td>
<td>1.2</td>
</tr>
<tr>
<td>IMU</td>
<td>12.4</td>
</tr>
<tr>
<td>Paediatrics</td>
<td>2.2</td>
</tr>
<tr>
<td>Internal Medicine</td>
<td>3.6</td>
</tr>
<tr>
<td>Surgery</td>
<td>3.6</td>
</tr>
</tbody>
</table>
The most frequent types of fungal nosocomial infections - EU

- Urinary tract infections: 12%
- Others (eye, ear, upper airways, skin/mucoses, GIT): 22%
- Pneumonia and other infections of lower airways: 26%
- Surgical site infections: 24%
- Blood stream infections/Sepsis: 16%
Yeast colonization of surfaces and its characterization
Aerosol

Moulds - conidia (6-12 x 3.5-4.0 μm)
Sexual developmental stage –

cleistothecia - 140 x 200 μm

ascospores - lemon-shaped, 1-celled, smooth-walled, yellowish/brownish (6-7 x 4.0-4.5 μm)

Colonies - hairy, cottony/lanose or moist

Hyphae - melanized, not when submerged (conidiogenesis also in submersion)
Fungal fragments (≤ 1.6μm optical size)

- aerosolized simultaneously with spores (probably liberated permanently)

- released in higher (10² x) numbers (10⁵ /cm²) - prediction based on the spore counts impossible
 --- fungus (dessication stress), dynamical conditions, adhesion (moisture of the material)

- also wide temporal variation of aerial concentrations

- fragments and spores share common antigens - fragments‘ activity higher!
Aerosols g/l (m3)

- fungal particles in drops Φ ~10 μm (20 μm)
 (fine fog)

- sedimentation from 3 m ~ 19 min (5 min)
Mouldy smell – HVAC analysis
INHALING EXPOSURE

Dynamics ??
(„propagule burst“ vs. common air)

Deposition
- nasal breathing: 30-40 % particles in the nose, 30-40 % in the alveoli
- oral breathing: 70 % in the alveoli

conglomerates/aggregates/particles ??
- rhinopharynx, sinuses (conidia ??)

- trachea, bronchi (conidia, ascospores ??) - allergic bronchopulmonary mycosis

- alveoli (fragments, conidia ??)

Agent-release

-mucociliary effect ??
Secondary metabolites of indoor moulds - *in vitro* toxicity

- tracheal ciliary movement ceased in **24 h**

- lectin histochemistry – T II lung cells:

<table>
<thead>
<tr>
<th>Control</th>
<th>2.5%</th>
</tr>
</thead>
</table>

![Control Image](image1.png) | ![2.5% Image](image2.png)
Microorganism Selection

<table>
<thead>
<tr>
<th>More Resistant</th>
<th>Microorganism</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prions</td>
<td>Scrapie, Creutzfeld-Jacob disease, Chronic wasting disease</td>
<td></td>
</tr>
<tr>
<td>Bacterial Spores</td>
<td>Bacillus, Geobacillus, Clostridium</td>
<td></td>
</tr>
<tr>
<td>Protozoal Oocysts</td>
<td>Cryptosporidium</td>
<td></td>
</tr>
<tr>
<td>Helminth Eggs</td>
<td>Ascaris, Enterobius</td>
<td></td>
</tr>
<tr>
<td>Mycobacteria</td>
<td>Mycobacterium tuberculosis, M. terrae, M. chelonae</td>
<td></td>
</tr>
<tr>
<td>Small, Non-Enveloped Viruses</td>
<td>Poliovirus, Paroviruses, Papilloma viruses</td>
<td></td>
</tr>
<tr>
<td>Protozoal Cysts</td>
<td>Giardia, Acanthamoeba</td>
<td></td>
</tr>
<tr>
<td>Fungal Spores</td>
<td>Aspergillus, Penicillium</td>
<td></td>
</tr>
<tr>
<td>Gram negative bacteria</td>
<td>Pseudomonas, Providencia, Escherichia</td>
<td></td>
</tr>
<tr>
<td>Vegetative Fungi and Algae</td>
<td>Aspergillus, Trichophyton, Candida, Chlamydomonas</td>
<td></td>
</tr>
<tr>
<td>Vegetative Helminths and Protozoa</td>
<td>Ascaris, Cryptosporidium, Giardia</td>
<td></td>
</tr>
<tr>
<td>Large, non-enveloped viruses</td>
<td>Adenoviruses, Rotaviruses</td>
<td></td>
</tr>
<tr>
<td>Gram positive bacteria</td>
<td>Staphylococcus, Streptococcus, Enterococcus</td>
<td></td>
</tr>
<tr>
<td>Enveloped viruses</td>
<td>HIV, Hepatitis B virus, Herpes Simplex virus</td>
<td></td>
</tr>
</tbody>
</table>

Less Resistant
Relationship between hand hygiene and the acquisition of health care-associated pathogens
Review of hand hygiene

- Water
- Plain (non-antimicrobial) soap
- Quaternary ammonium compounds
- Alcohols
- Chlorhexidine
- Chloroxylenol
- Hexachlorophene
- Iodine and iodophors
- Triclosan
- Other agents

How to wash your hands properly:
1. Wet your hands
2. Liquid soap
3. Lather and scrub - 20 sec
4. Rinse - 10 sec
5. Dry your hands
6. Turn off tap

DON'T FORGET TO WASH:
- between your fingers
- under your nails
- the tops of your hands
World Health Organization, 2009

- WHO Guidelines on Hand Hygiene in Health Care
- First Global Patient Safety Challenge
Biocidal products: **Regulation (EU) No 528/2012** published on 27 June, applies from 1 September 2013

- **BIOCIDAL PRODUCTS** - contain or generate active substances and
 - are used against harmful organisms (pests and bacteria)
 - both to protect human and animal health
 - include household products (disinfectants, rodenticides, repellents, insecticides) and for industrial applications as well
The 22 Product Types (‘PTs’) of the Biocidal Products Regulation (528/2012)

- **Group 1: Disinfectants** - employed in controlling hospital infection

Human hygiene – 1 Biocidal products used for human hygiene purposes, applied on or in contact with human skin or scalps for the primary purpose of disinfecting the skin or scalp.

Disinfectants and algaecides not intended for direct application to humans or animals.- used for the disinfection of surfaces, materials, equipment and furniture which are not used for direct contact with food or feeding stuffs.
Human hygiene products

• **Efficacy/efficaceous** - the (possible) effect of the application of a hand hygiene formulation when tested in laboratory or *in vivo* situations

• **Effectiveness/effective** - the clinical conditions under which a hand hygiene product has been tested for its potential to reduce the spread of pathogens, e.g. field trials

• **Surrogate microorganism** - a microorganism used to represent a given type or category of nosocomial pathogen when testing the antimicrobial activity of antiseptic

 - selected for their safety, ease of handling, and relative resistance to antimicrobials.
Evaluation methods

• of the antifungal efficacy of handrub and
• handwash agents and formulations for surgical hand preparation:

Current methods:
CEN standards EN 1499 and EN 1500 (Candida albicans, Trichophyton mentagrophytes; Aspergillus niger); ASTM E-1174202
EN 12791 (surgical hand preparation; ASTM E-1115 (surgical hand scrub)

Shortcomings of traditional test methods
The need for better methods, e.g. the protective effects of BIOFILMS - 3,000 x more resistant than plankton
Disinfectants’ efficacy against yeasts:

- pure cultures
- mixed cultures
- biofilm
Nosocomial oculomycosis

Ringer’s solution - - - *Purpureocillium lilacinum* (*Paecilomyces lilacinus*)

![Image of eye](image1.png)

![Image of fungus](image2.png)

![Image of mycelium](image3.png)

Fungicide effectiveness of disinfectants against Purpureocillium lilacinum

<table>
<thead>
<tr>
<th>Time in minutes</th>
<th>H₂O₂ (0.5%)</th>
<th>H₂O₂ (1%)</th>
<th>H₂O₂ (2%)</th>
<th>Glutaraldehyde (2%)</th>
<th>Chloramin (5%)</th>
<th>I₂ (3%)</th>
<th>Formaldehyde (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **eye**
- **Ringer’s solution**

Disinfectant
Hospital associated moulds, incl. heat-resistant ones

Disinfectant sensitivity of hospital associated fungi

Fungi
- Trichophyton mentagrophytes
- Geotrichum candidum
- Penicillium roqueforti
- Eupenicillium baarnense
- Talaromyces flavus
- Dichotomyces cejpii
- Talaromyces trachyspermus
- Neosartorya fischeri
- Talaromyces avellanues
- Byssochlamys nivea

Disinfectants:
- H2O2 (1%)
- H2O2 (0.5%)
- Chlorhexidin (1%)
- H2O2 (2%)
- QATs (3%)
- Chloramin (5%)
- Cl2 (5%)
- I2 (5%)

Time in minutes

0 20 40 60 80 100 120
Disinfectant Effectiveness Tests

- EN 1276 or 1040 (bacterial suspension test)
- 1650 (fungal suspension test)
- 13704 (sporicidal suspension test)
- 13697 (carrier test)
- 14476 (viral Testing)
- 14348 (TB Testing)

- AFNOR (France)
 - NFT 72-150 Suspension
 - NFT 72-190 Carrier Test

- DGHM (GER; Carrier & Suspension Tests)

TGA (Australia)
Common AOAC International Tests
(last rev. 2012)

• Use-Dilution Method Tests for Liquids
 – 955.14 *Salmonella enterica*
 – 955.15 *Staphylococcus aureus*
 – 964.02 *Pseudomonas aeruginosa*

• Germicidal Spray Products Test

• Confirmatory Tuberculocidal Activity Test

• **Fungicidal Activity of Test Substances**

• Sporicidal Activity of Disinfectants (966.04)

• EN-13697 offers valuable insight into quantitative surface testing
Examples of the protocols

- **Sterilant** (60 carriers each on two surfaces); spores of *Bacillus subtilis* ATCC 19659 and *Clostridium sporogenes* ATCC 3584; 3 lots (720 carriers)

- **Fungicide** (10 carriers rep. 2 lots killing all spores of *Trichophyton mentagrophytes* ATCC 9533)

- **Disinfectant** (60 carriers representing 3 lots) against 3 bacteria; *S. enterica* ATCC 10708, *S. aureus* ATCC 6538, *P. aeruginosa* ATCC 15442

- **Tuberculocide** (2 lots killing all *Mycobacterium tuberculosis* var. bovis (BCG) on all carriers) or 4 LRV in quantitative test

- **Virucide** (2 lots at 4 replicates per each dilution showing inactivation at all dilutions if no cytotoxicity) – 4 LRV (3 LRV if cytotoxicity)

- **Sanitizer-N-FC** (3 LRV on surfaces within 5 min against *S. aureus* ATCC 6538 and *Klebsiella pneumoniae* ATCC 4352 or *Enterobacter aerogenes* ATCC 13048)
Guidelines for GCP

- W.A. Rutala,1,2, D. J. Weber, 1,2, and the Healthcare Infection Control Practices Advisory Committee (HICPAC)

- 1Hospital Epidemiology University of North Carolina Health Care System Chapel Hill, NC 27514
- 2Division of Infectious Diseases University of North Carolina School of Medicine Chapel Hill, NC 27599-7030
• commercial formulations - unique products and must be registered (EPA, EC)
• given product - designed for a specific purpose and used in a certain manner - read labels carefully!
• disinfectants - not interchangeable!
• incorrect concentrations and inappropriate disinfectants - excessive costs
• occupational diseases among cleaning personnel (e.g., formaldehyde, glutaraldehyde, and chlorine) - precautions (e.g., gloves and proper ventilation) to minimize exposure!
Keys to a successful disinfection

- Antifungal agent
- Choosing the proper disinfectant for the job
- Testing protocol (practical, achievable & verifiable)
- Choose the method that best fits the situation
- Sanitization procedures
- Set up the proper rotation of disinfectants to control all organisms
- Change control
- Have all processes organized
Thank you for your attention!

All the citations are available upon request.