Cleaning: Recent advances in products and processes and Real-time monitoring

Dr. Michelle J. Alfa, FCCM
St. Boniface General Hospital, Winnipeg, MB
Overview:

- **Medical Device Cleaning:**
 - Current Issues & Advances
 - Manufacturer validated protocols
 - Cleaning mechanics
 - Cleaning agents

- **Real-time monitoring**
 - Manufacturer/Research tests
 - Rapid User testing

- **Conclusions**
Manufacturer validated cleaning protocols

- Lack of validated manufacturer’s cleaning instructions for some devices:
 - “Clean as per usual hospital protocol”
 - “Clean the tips by aspirating distilled water through the tip to clear any debris from within the tip and prevent plugging of the suction port.”
- No indication whether disassembly is required
- No indication whether sonication is needed or could damage device
New Developments:
Manufacturer’s Instructions:

- AAMI ST81 and EN ISO 17664 Guidance documents now require medical device manufacturers provide at least one manual and one automated validated cleaning protocol

- USERS: refuse to order/pay for medical device until validated cleaning protocol provided by manufacturer
Automated preferred
(equipment must be maintained properly)

- Automated Endoscope Reprocessors (AERs)
 - cleaning cycles
 (many do not have FDA clearance for cleaning claims)
 - channel separators; flow monitoring (ISO 15883-4)

- Narrow lumen cleaners
 - ultrasonic combined with detergent and fluid flow
 - self-decontamination (thermal or other)**

- Washer/Disinfectors
 - validated for respiratory equipment; replace pasteurizers
 (spray vs immersion)
And What About the Water Quality??!!

- AAMI working on a “Water Quality” Guidance document for users
- ISO 15883-1; Viable count of final rinse water and/or other methods that are equivalent (e.g. ATP method)
Cleaning Agents:

- Chemical detergents: Alkaline, Acid, Neutral
- Enzymatic detergents:
 - single or multi-enzyme
 - contact time
 - protein solution (rinsing important)
- Accelerated Hydrogen Peroxide agents

The *specific formulation* determines efficacy; cannot compare across class of agents (e.g. not all enzymatic detergents are equally effective)
Survival of bacteria in enzymatic detergent

Enterococcus faecalis

Pseudomonas aeruginosa

Soaking overnight at room temperature in enzymatic detergent will lead to biofilm formation!!
Enzymatic Detergent: Biofilm removal

Medical Device Cleaning; Real-time monitoring

- Monitor Washer function
- Monitor medical devices post-cleaning

It Looks Clean Enough to me!!!
Recent Advance: Guidelines encouraging rapid user test methods

- **CEN/ISO (15883-5):** working toward standardizing soils and test methods for users
- **AAMI:** guideline for manufacturer’s
 - recommending manufacturers provide rapid tests for users to verify in-use cleaning efficacy

How Clean is Clean Enough!!??
What parameter to monitor?

Guidelines: “Visibly Clean”

Literature parameter benchmarks:

Stainless steel instruments: Protein
- OPA method: 0.01 µg/device; (Verjat 1999)
- Ninhydrin method: 2.5 µg/swab; (deBruin 2002)
- Biuret method: 5.5 µg/cm²; (Kruger 1997)
- Hemoglobin strips: ? Limit of detection (Fengler)

Flexible endoscope biopsy channel: (Alfa et al 2002)
- Protein; < 6.4 µg/cm²
- Carbohydrate; < 1.8 µg/cm²
- Hemoglobin; < 2.2 µg/cm²

WHAT IS REALISTIC FOR IN-USE TESTING??
New Developments: Test Soil

ISO 15883-5: Multiple test soils:
- de Bruin (2005): compared soils and identified a universal standardized test soil for users (only for alkaline detergent cleaning in hot water)
 - visual assessment of cleaning
 - Washer monitoring; no correlation with in-use benchmarks
 - recommended German egg yolk test soil

deBruijn ACP, van Drongelen AW, Zentral Steril 2005;13
Device cleaning test methods:
Device immersed, or lumen filled with reagent

- **Bradford’s reagent:** detects protein by turning blue
- **TMB reagent:** detects hemoglobin by turning green:
- **Radioactive tracers:** labeled protein; if not removed, detected as residual radioactivity inside medical device

Specialized radioisotope imaging equipment
SYPRO Ruby Test for Protein on Medical devices

- Sensitive dye that stains any protein; detected using special epi-fluorescent microscope
- Surface testing of residual protein on medical devices after cleaning; LD of 85pg/mm²
- Not clear what would be an acceptable level of residual dye (ie. cutoff for residual protein)
- A good research tool but not readily adaptable to in-use testing for users

Lipscomb et al J Hosp Infect 2006;62:141-8
Washer Monitoring; in-hospital use

- **TOSI:** Protein/fibrin (PEREG, GmbH) QA device for washers; visual inspection post-cleaning.

- **Test soil:** colored paste brushed onto devices, test carriers, or inside washer on walls; visual inspection post-cleaning (e.g. Browne’s soil, Danish soil).

- **Lumen Test:**
 - Soil/stained/fixed inside tubing; clean then visualize
 - Biofilm; after cleaning, stain or do viable count to determine if biofilm removed

Orzechowski et al Zentr Steril 2003;11:165-178
Zuhlsdorf et al J Hosp Infect 2004;56:305-11
Rapid User Tests: for in-hospital cleaning assessment

- **Biuret reaction (5.5 µg/cm²):** Protein (Kruger 1997); swab device → assess colour development.

- **Protec Swab test (unknown LD):** Protein or ATP (Biotrace) swab can be tested. (commercially available)

- **Ninhydrin Swab test (2.5 µg/swab):** Protein: ISO/CEN method evaluated for users; swab method (deBruin 2002)

Surface testing only, not applicable to lumens
REMEMBER: Rinse well after Cleaning

Enzymatic detergents are proteins and if not properly rinsed off can be detected by rapid user cleaning tests that detect protein!!
ATP: Flexible Endoscopes

- ATP is “energy source” in living cells (e.g. eukaryotes; human cells) and prokaryotes; bacterial cells)
- Rapid test methods for swab & fluid samples from flexible scopes (surfaces and lumens)
- Cutoff for adequate cleaning? - 500 RLU/sample suggested
- Organic material alone; no ATP (fecal protein, carbohydrate etc)

RLU (relative light units) measured
<table>
<thead>
<tr>
<th>Site sampled:</th>
<th>ATP RLU/sample</th>
<th>Unit A (N = 25)</th>
<th>Unit B (N = 38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface; swab, channel; brush</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope: Biopsy channel</td>
<td></td>
<td>683 (16%)</td>
<td>1389 (45%)</td>
</tr>
<tr>
<td>(post-clean, pre-disinfection)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope: Biopsy channel</td>
<td></td>
<td>82 (4%)</td>
<td>67 (0%)</td>
</tr>
<tr>
<td>(post-clean, post-disinfection)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope: Exterior, tip</td>
<td></td>
<td>1387 (44%)</td>
<td>353 (16%)</td>
</tr>
<tr>
<td>(post-clean, post-disinfection)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endoscopy room: Video equipment switches</td>
<td></td>
<td>5322 (92%)</td>
<td>401 (13%)</td>
</tr>
</tbody>
</table>

(from: Obee et al 2005)
Value of Cleaning Verification tests for users

- **Washing Machine tests:**
 - confirm proper function (QA)

- **Medical device tests:**
 - confirm that cleaning protocol used in-hospital is effective
 - confirm staff training and document competency over time
SUMMARY:

- **Medical Device Cleaning:**
 - Current Issues & Advances
 - Manufacturer validated protocols
 - Cleaning mechanics
 - Cleaning agents

- **Real-time monitoring by users:**
 - Washer efficacy**
 - Cleanliness of medical devices