Potential of Cold Atmospheric Plasma as a new method for the decontamination and sterilization of reusable surgical instruments.

14th World Sterilization Congress 8th National Sterilization Disinfection Congress of Turkey

6th-9th November 2013

Rodolphe Hervé PhD, MSc

Standard reprocessing

The five main functions performed in a hospital sterile service department

Decontamination and sterilization

Assessment of instruments cleanliness

Standard reprocessing: neurosurgery instruments

Thioflavin T (bright blue) and SYPRO Ruby (amber) dual staining observed on (a-e) a suction canullae and (f) diathermy forceps from a neurosurgery set that were fully reprocessed through a sterile service department. White bars are 100 μ m, red bar is 10 μ m.

Standard reprocessing: neurosurgery instruments

Proteinaceous (total and amyloid) contamination on a succion cannulae isolated from a craniotomy set.

Standard reprocessing: flexible luminal endoscopes

Standard reprocessing: endodontic files

Standard reprocessing: endodontic files

Cleaning limitations Protein removal action of various cleaners

Cleaning limitations

Remaining contamination on surfaces (proportion of hydrophobic amyloid-rich proteins)

How can standard cleaning fail?

Mechanism

Potential caveats

Physical disruption (detergent, sonication, brushing, flushing)

Displacement and/or spreading

Enzymatic degradation

Shelf life; control of parameters

Chemical modification (pH>12)

Damage to instruments; control of parameters and efficacy

What is gas plasma?

Southampton

- Energetic electrons à chemical dissociation @ low gas temperature
- On-site production of reactive, short-living species e.g. O₂*-; O; ¹O₂; NO ... OH* and H₂O₂ à known to act on protein, lipid and DNA
 - Oxidants: OH*, O2*-; O; 102, H2O2

Non-equilibrium Chemistry

what is gas plasma? | Shooting Plasma

Southampton

Exposure: 1ns
Interval: 100 ns

Nanosecond imaging

CAP endo-decon | Electron Bombardment

Walsh JL and Kong MG (2008) Appl. Phys. Lett. 94: 021501;

Testing of first CAP prototype

Southampton CAP parameters during initial tests

High purity helium/oxygen mix

5 L/min and 100 ml/min respectively

Target surface set within 1.5 cm

Up to 2 min application

Testing of first CAP prototype

Spiked implant wires before CAP treatment

Southampton Spiked implant wires after partial CAP treatment

CAP appears equally effective against amyloid proteins

CAP endoDecon | Versatility and Uniformity Control

Cao Z et al (2009) *Appl. Phys. Lett.* 94: 021501; Nie Q et al (2009) *New J. Phys.* 11: 115015; Kong MG (2011) *J. Phys. D: Appl. Phys.* 44(17): 174018; Walsh JL et al (2008) *IEEE Trans. Plasma Sci.* 36(4): 1314.

The place of CAP in standard reprocessing

The place of CAP in standard reprocessing

The place of CAP in standard reprocessing

what is gas plasma? | Optimisation

Ar-O2-H2O Plasmas

- up to 1,000 chemical reactions
- threshold dose of each protein-inactivating plasma agent is unknown
 - complication with synergy
 - plasma diagnostics is complex and not always accessible
 - plasma diagnostics in liquid phase very under-studied field
- if achieved, a knowledge-based inaction indirect inactivation marker
- ... empirical strategy unreliable for ensuring efficacy and for system scaling

Agents	Plasma Characterisation
O*; OH* etc	Excited species – Optical emission spectroscopy(OES)
O, H2O-clusters	Ground state – OES not good – MBMS
OH, H2O2 etc in H2O	Electron spin resonance (ESR) spectroscopy
UV	Absolute OES
Ozone	Spatial resolved – UV absorption spectroscopy (UVAS)
Electron density	Probes not applicable – current density
Electron energy	Boltzmann plot
All	Plasma modelling

... additional studies, such as OH scavengers

CAP optimisation

EDIC/EF for rapid and very sensitive quantification of residual proteins and microorganisms.

Refined prion infectivity assays for human strains under development.

Mechanisation and scaling up of the process.

Adaptation into SSDs.

Conclusions

Proteinaceous microcontamination (potentially including PrPSc in affected countries) is a common problem in clinical settings.

Current standard decontamination procedures suffer from inherent physicochemical limitations.

CAP offers a radically different decontamination mechanism capable of targeting individual atoms, without the problems associated with liquid solutions.

Further development required to adapt the technology to different end users/instruments.

Acknowledgements

SSDs (England)

CEA (France)

The Pirbright Institute

NCJDSU (Edinburgh)

Public Health England

English Department of Health

Fondation Alliance BioSecure

R.Herve@soton.ac.uk
C.W.Keevil@soton.ac.uk
mkong@odu.edu